

Welcome to multimodal documentation.

multimodal is a python library providing tools for vision and language research.
It provides visual features commonly used for Captionning and Visual Question Answering tasks,
as well as datasets such as VQA.

Datasets

	Visual Question Answering

	CLEVR

	Tokenizers
	Base class

	VQA v2

Visual Features

	Bottom-Up Top-Down Object Features

Other

	Models

	Command Line Interface

This library was developped by Corentin Dancette. If you have any new feature request
or want to report a bug, please open an issue on the github tracker, or submit a Pull Request.

Visual Question Answering

Visual Question Answering datasets are available in multimodal.
Annotations data are automatically downloaded and processed when the
class is instanciated. Note that the pre-processing can take several minutes.

	
class multimodal.datasets.VQA(*args: Any, **kwargs: Any)

	Pytorch Dataset implementation for the VQA v1 dataset (visual question answering).
See https://visualqa.org/ for more details about it.

When this class is instanciated, data will be downloaded in the directory specified by the dir_data parameter.
Pre-processing of questions and answers will take several minutes.

When the features argument is specified, visual features will be downloaded as well. About 60Go will be
necessary for downloading and extracting features.

	Parameters

	
	dir_data (str) – dir for the multimodal cache (data will be downloaded in a vqa2/ folder inside this directory

	features (str|object) – which visual features should be used. Choices: coco-bottomup or coco-bottomup-36
You can also give directly the feature instance.

	split (str) – Which t [train, val, test]

	dir_features (str) – directory to download features. If None, defaults to $dir_data/features

	label (str) – either multilabel, or best. For multilabel, GT scores for questions are
given by the score they are assigned by the VQA evaluation.
If best, GT is the label of the top answer.

	tokenize_questions (bool) – If True, preprocessing will tokenize questions into tokens.
The tokens are stored in item[“question_tokens”].

	load (bool) – default True. If false, then the questions annotations and questions will not be loaded
in memory. This is useful if you want only to download and process the data.

	
__getitem__(index)

	Returns a dictionnary with the following keys

{
 'image_id',
 'question_id',
 'question',
 'answer_type',
 'multiple_choice_answer',
 'answers',
 'image_id',
 'question_type',
 'question_id',
 'scores',
 'label' # ground truth label to be used for the loss
}

Aditionnaly, if visual features are used, keys from the features will be added.

	
static collate_fn(batch)

	Use this method to collate batches of data.

	
evaluate(predictions)

	Evaluates a list of predictions, according to the VQA evaluation protocol. See https://visualqa.org/evaluation.html.

	Parameters

	predictions (list) – List of dictionnaries containing question_id and answer keys. The answer must be specified
as a string.

	Returns

	A dict of floats containing scores for “overall”, “yes/no”, number”, and “other” questions.

	
class multimodal.datasets.VQA2(*args: Any, **kwargs: Any)

	Pytorch Dataset implementation for the VQA v2 dataset (visual question answering).
See https://visualqa.org/ for more details about it.

When this class is instanciated, data will be downloaded in the directory specified by the dir_data parameter.
Pre-processing of questions and answers will take several minutes.

When the features argument is specified, visual features will be downloaded as well. About 60Go will be
necessary for downloading and extracting features.

	Parameters

	
	dir_data (str) – dir for the multimodal cache (data will be downloaded in a vqa2/ folder inside this directory

	features (str) – which visual features should be used. Choices: coco-bottomup or coco-bottomup-36

	split (str) – Which t [train, val, test]

	dir_features (str) – directory to download features. If None, defaults to $dir_data/features

	label (str) – either multilabel, or best. For multilabel, GT scores for questions are
given by the score they are assigned by the VQA evaluation.
If best, GT is the label of the top answer.

	tokenize_questions (bool) – If True, preprocessing will tokenize questions into tokens.
The tokens are stored in item[“question_tokens”].

	
__getitem__(index)

	Returns a dictionnary with the following keys

{
 'image_id',
 'question_id',
 'question',
 'answer_type',
 'multiple_choice_answer',
 'answers',
 'image_id',
 'question_type',
 'question_id',
 'scores',
 'label' # ground truth label to be used for the loss
}

Aditionnaly, if visual features are used, keys from the features will be added.

	
static collate_fn(batch)

	Use this method to collate batches of data.

	
evaluate(predictions)

	Evaluates a list of predictions, according to the VQA evaluation protocol. See https://visualqa.org/evaluation.html.

	Parameters

	predictions (list) – List of dictionnaries containing question_id and answer keys. The answer must be specified
as a string.

	Returns

	A dict of floats containing scores for “overall”, “yes/no”, number”, and “other” questions.

	
class multimodal.datasets.VQACP(*args: Any, **kwargs: Any)

	Pytorch Dataset implementation for the VQA-CP v1 dataset (visual question answering).
See https://www.cc.gatech.edu/grads/a/aagrawal307/vqa-cp/ for more details about it.

When this class is instanciated, data will be downloaded in the directory specified by the dir_data parameter.
Pre-processing of questions and answers will take several minutes.

When the features argument is specified, visual features will be downloaded as well. About 60Go will be
necessary for downloading and extracting features.

	Parameters

	
	dir_data (str) – dir for the multimodal cache (data will be downloaded in a vqa2/ folder inside this directory

	features (str) – which visual features should be used. Choices: coco-bottomup or coco-bottomup-36

	split (str) – Which t [train, val, test]

	dir_features (str) – directory to download features. If None, defaults to $dir_data/features

	label (str) – either multilabel, or best. For multilabel, GT scores for questions are
given by the score they are assigned by the VQA evaluation.
If best, GT is the label of the top answer.

	tokenize_questions (bool) – If True, preprocessing will tokenize questions into tokens.
The tokens are stored in item[“question_tokens”].

	
__getitem__(index)

	Returns a dictionnary with the following keys

{
 'image_id',
 'question_id',
 'question',
 'answer_type',
 'multiple_choice_answer',
 'answers',
 'image_id',
 'question_type',
 'question_id',
 'scores',
 'label' # ground truth label to be used for the loss
}

Aditionnaly, if visual features are used, keys from the features will be added.

	
static collate_fn(batch)

	Use this method to collate batches of data.

	
evaluate(predictions)

	Evaluates a list of predictions, according to the VQA evaluation protocol. See https://visualqa.org/evaluation.html.

	Parameters

	predictions (list) – List of dictionnaries containing question_id and answer keys. The answer must be specified
as a string.

	Returns

	A dict of floats containing scores for “overall”, “yes/no”, number”, and “other” questions.

	
class multimodal.datasets.VQACP2(*args: Any, **kwargs: Any)

	Pytorch Dataset implementation for the VQA-CP v2 dataset (visual question answering).
See https://www.cc.gatech.edu/grads/a/aagrawal307/vqa-cp/ for more details about it.

When this class is instanciated, data will be downloaded in the directory specified by the dir_data parameter.
Pre-processing of questions and answers will take several minutes.

When the features argument is specified, visual features will be downloaded as well. About 60Go will be
necessary for downloading and extracting features.

	Parameters

	
	dir_data (str) – dir for the multimodal cache (data will be downloaded in a vqa2/ folder inside this directory

	features (str) – which visual features should be used. Choices: coco-bottomup or coco-bottomup-36

	split (str) – Which t [train, val, test]

	dir_features (str) – directory to download features. If None, defaults to $dir_data/features

	label (str) – either multilabel, or best. For multilabel, GT scores for questions are
given by the score they are assigned by the VQA evaluation.
If best, GT is the label of the top answer.

	tokenize_questions (bool) – If True, preprocessing will tokenize questions into tokens.
The tokens are stored in item[“question_tokens”].

	
__getitem__(index)

	Returns a dictionnary with the following keys

{
 'image_id',
 'question_id',
 'question',
 'answer_type',
 'multiple_choice_answer',
 'answers',
 'image_id',
 'question_type',
 'question_id',
 'scores',
 'label' # ground truth label to be used for the loss
}

Aditionnaly, if visual features are used, keys from the features will be added.

	
static collate_fn(batch)

	Use this method to collate batches of data.

	
evaluate(predictions)

	Evaluates a list of predictions, according to the VQA evaluation protocol. See https://visualqa.org/evaluation.html.

	Parameters

	predictions (list) – List of dictionnaries containing question_id and answer keys. The answer must be specified
as a string.

	Returns

	A dict of floats containing scores for “overall”, “yes/no”, number”, and “other” questions.

CLEVR

https://cs.stanford.edu/people/jcjohns/clevr/

	
class multimodal.datasets.CLEVR(*args: Any, **kwargs: Any)

	CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning.

See https://cs.stanford.edu/people/jcjohns/clevr/

Warning: instanciating this class will download a 18Gb file to the multimodal data directory
(by default in your applications data). You can specify
the multimodal data directory by specifying the dir_data argument, or specifying it in your path.

	Parameters

	
	dir_data (str) – dir for the multimodal cache (data will be downloaded in a clevr/ folder inside this directory

	split (str) – either train, val or test

	transform – torchvision transform applied to images. By default, only ToTensor.

	
__getitem__(index: int)

	Returns a dictionnary with the following keys:

{
 "index",
 "question",
 "answer":,
 "question_family_index":,
 "image_filename":,
 "image_index":,
 "image"
 "label",
}

Note that you can recover the program for an example by using the index:

index = item["index"][0] # first item of batch
program = clevr.questions[index]["program"]

Tokenizers

Base class

We implement a basic tokenizer class, built on torchtext basic_english tokenizer.
Its purpose is to transform text into a series of token_ids (integers), that will be fed to
a word vector.

	
class multimodal.text.BasicTokenizer(tokens: List[str] = [], sentences: List[str] = [], name: Optional[str] = None, pad_token='<pad>', unk_token='<unk>', padding_side='right', dir_data: Optional[str] = None)

	This class maps word tokens to token_ids.
In case of unknown token ids, the
It will also pad the data.

	Parameters

	
	tokens (list) – Tokens to add in the dictionnary. Those can be tokens from pretrain vectors.

	sentences (list) – List of sentences that need to be tokenized first, before building the vocab.
Tokens from those sentences will be added to the vocabulary if they were not in it already.

	name (str) – name which will be used to save the tokenizer. Use a different name when changing the tokens.

	pad_token (str) – token used to pad the data.

	unk_token (str) – token used for unknown words. The id is saved in the attribute unk_token_id.

	pad_side (str) – either “left” or “right”. The pad_token_id attribute will save the position.

	dir_data (str) – directory to save multimodal data.

	
tokenize(s, replace_unk=True, padding=True)

	This function will return the tokenized representation of the input.
Example: tokenize(“Hello there”) will return [“hello”, “there”], assuming both words are in the vocabulary.

In case a list of strings is given as input, this function will add padding tokens to ensure that all
outputs have the same length.

	Parameters

	
	s (str | List[str]) – Either a string or a list of string, to be tokenized.

	keep_unk (bool) – If true, then the tokenizes will not replace unknown words with the UNK token. Default: false

	padding (bool) – Whether to add the padding token or not.

	
convert_tokens_to_ids(tokens)

	Converts tokenized representations
:param tokens: List of string tokens that will be converted to their token ids.
:type tokens: list
:param If a token is missing from the vocabulary:
:param it will be converted to self.unk_token_id.:
:param Padding tokens will be converted to self.pad_token_id.:

VQA v2

The pretrained tokenizer for VQA v2 is called pretrained-vqa2.

from multimodal.text import BasicTokenizer
tokenizer = BasicTokenizer.from_pretrained("pretrained-vqa2")
tokens = tokenizer("What color is the car?")
feed tokens to model

Bottom-Up Top-Down Object Features

Those visual features were introduced by Anderson et. al. in the paper
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [https://arxiv.org/abs/1707.07998].

They are extracted with a Faster R-CNN, and trained on the Visual Genome dataset to detect objects and
their attributes (shapes, colors…).

multimodal provides a class to download and use those features extracted on the COCO image dataset.
They can be used for most Visual Question Answering and Captionning that use the this dataset for images.

from multimodal.features import COCOBottomUpFeatures

bottomup = COCOBottomUpFeatures(
 features="coco-bottomup-36",
 dir_data="/data/multimodal",
)
image_id = 13455
feats = bottomup[image_id]
print(feats.keys())
['image_w', 'image_h', 'num_boxes', 'boxes', 'features']
print(feats["features"].shape) # numpy array
(36, 2048)

	
class multimodal.features.COCOBottomUpFeatures(features: str, dir_data: Optional[str] = None)

	Bottom up features for the COCO dataset

	Parameters

	
	features (str) – one of [trainval2014_36, trainval2014, test2014_36, test2014, test2015-36, test2015].
Specifies the split, and the number of detected objects. _36 means 36 objetcs are detected in every image, and otherwise,
the number is based on a detection threshold, between 10 and 100 objects.

	dir_data (str) – Directory where multimodal data will be downloaded. You need at least 60Go for downloading
and extracting the features.

	
__getitem__(image_id: int)

	Get the features.

	Parameters

	image_id (str|int) – The id of the image in COCO dataset.

	Returns

	A dictionnary containing the following keys:

{
 'image_id',
 'image_h': height
 'image_w': width
 'num_boxes': number of objects
 'boxes': Numpy array of shape (N, 4) containing bounding box coordinates
 'features': Numpy array of shape (N, 2048) containing features.
}

	
keys()

	
	Returns

	List of all keys

	Return type

	list

Models

UpDown

The Bottom-Up and Top-Down Attention for VQA model is available in multimodal.

You can either train it directly (you will need to clone the repository), or import it in your code.

Command Line Interface

All commands start with python -m multimodal <subcommand>

The subcommands available are listed here:

VQA Evaluation: vqa-eval

Description

Run the evaluation, following the VQA evaluation metric, taking into account answers from multiple humans.

python -m multimodal vqa-eval -p <predictions-path> -s <split> --dir_data <multimodal_dir_data>

Options

	
-p <path>, --predictions <path>

	path to predictions, should follow the official VQA evaluation format (see https://visualqa.org/evaluation.html)

	
-s <split>, --split <split>

	VQA split, either train, val or test
depending on the dataset (in VQA-CP, there are only train and test).

	
--dir_data <dir_data> (optional)

	path where data will be downloaded if necessary. By default in appdata.

Example

$ python -m multimodal vqa-eval -s val -p logs/updown/predictions.json
Loading questions
Loading annotations
Loading aid_to_ans
{'overall': 0.6346422273435531, 'yes/no': 0.8100979625284017, 'number': 0.42431932892585483, 'other': 0.5569148080507953}

Data Download: download

Description

Download and process data.

python -m multimodal download <dataset> --dir_data <dir_data>

Options

	
--dir_data <dir_data> (optional)

	path where data will be downloaded if necessary. By default in appdata.

	
dataset

	Name of the dataset to download.
Can be either VQA, VQA2, VQACP, VQACP2, coco-bottom-up, coco-bottomup-36.

Index

 Symbols
 | _
 | B
 | C
 | D
 | E
 | K
 | P
 | T
 | V

Symbols

 	
 	
 --dir_data

 	python--m-multimodal-download command line option

 	python--m-multimodal-vqa-eval command line option

 	
 --predictions

 	python--m-multimodal-vqa-eval command line option

 	
 	
 --split

 	python--m-multimodal-vqa-eval command line option

 	
 -p

 	python--m-multimodal-vqa-eval command line option

 	
 -s

 	python--m-multimodal-vqa-eval command line option

_

 	
 	__getitem__() (multimodal.datasets.CLEVR method)

 	(multimodal.datasets.VQA method)

 	(multimodal.datasets.VQA2 method)

 	(multimodal.datasets.VQACP method)

 	(multimodal.datasets.VQACP2 method)

 	(multimodal.features.COCOBottomUpFeatures method)

B

 	
 	BasicTokenizer (class in multimodal.text)

C

 	
 	CLEVR (class in multimodal.datasets)

 	COCOBottomUpFeatures (class in multimodal.features)

 	collate_fn() (multimodal.datasets.VQA static method)

 	(multimodal.datasets.VQA2 static method)

 	(multimodal.datasets.VQACP static method)

 	(multimodal.datasets.VQACP2 static method)

 	
 	convert_tokens_to_ids() (multimodal.text.BasicTokenizer method)

D

 	
 	
 dataset

 	python--m-multimodal-download command line option

E

 	
 	evaluate() (multimodal.datasets.VQA method)

 	(multimodal.datasets.VQA2 method)

 	(multimodal.datasets.VQACP method)

 	(multimodal.datasets.VQACP2 method)

K

 	
 	keys() (multimodal.features.COCOBottomUpFeatures method)

P

 	
 	
 python--m-multimodal-download command line option

 	--dir_data

 	dataset

 	
 python--m-multimodal-vqa-eval command line option

 	--dir_data

 	--predictions

 	--split

 	-p

 	-s

T

 	
 	tokenize() (multimodal.text.BasicTokenizer method)

V

 	
 	VQA (class in multimodal.datasets)

 	VQA2 (class in multimodal.datasets)

 	
 	VQACP (class in multimodal.datasets)

 	VQACP2 (class in multimodal.datasets)

 nav.xhtml

 Table of Contents

 		
 Welcome to multimodal documentation.

 		
 Visual Question Answering

 		
 CLEVR

 		
 Tokenizers

 		
 Base class

 		
 VQA v2

 		
 Bottom-Up Top-Down Object Features

 		
 Models

 		
 UpDown

 		
 Command Line Interface

 		
 VQA Evaluation: vqa-eval

 		
 Description

 		
 Options

 		
 Data Download: download

 		
 Description

 		
 Options

_static/file.png

_static/minus.png

_static/plus.png

